Application of CO$_2$-Saturated Water Flooding as a Prospective Improved Oil Recovery and CO$_2$ Storage Strategy: Experimental and Simulation Study

Nader Mosavat and Farshid Torabi
Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Canada

Abstract

In this study, prior to flooding tests a number of CO$_2$ solubility measurement tests for CO$_2$–oil and CO$_2$–brine systems were conducted in order to determine the effect of operating conditions on the capacity of reservoir fluids to dissolve the injected CO$_2$. Next, series of flooding experiments were carried out using unconsolidated sand-pack, synthetic brine, and real Bakken light crude oil to investigate the performance of CO$_2$-saturated water injection as a potential strategy for improving light oil recovery and at the same time permanent CO$_2$ storage. Both solubility and flooding tests were performed at various operating pressures in the range of $P = 0.7$ MPa to 10.3 MPa and two constant operating temperatures of $T = 25$ °C and 40 °C.

According to the results of CO$_2$ solubility measurement tests at constant temperatures, an increase in CO$_2$ solubility values was observed for both CO$_2$–brine and CO$_2$–oil systems when the equilibrium pressure increases. Furthermore, it was revealed that for both aforementioned systems, the solubility of CO$_2$ reduces when temperature increased. In terms of oil recovery, it was found that the ultimate oil recovery factor of CO$_2$-saturated water flooding is consistently more than that of conventional water flooding leading this technique to be a more viable option as a means of improved oil recovery technique. In this study, flooding tests conducted at pressure of $P = 10.3$ MPa and temperature of $T = 25$ °C, verified that injection of CO$_2$-saturated water resulted in improving the conventional water flooding oil recovery factor by about 19.0% and 12.5% of OOIP for secondary and tertiary scenarios, respectively. From CO$_2$ storage point of view, it was revealed that mixing CO$_2$ with injected water noticeably provides permanent, safe, and practical CO$_2$ storage together with considerable oil recovery improvement in light oil systems.

It was also found that introducing CO$_2$ to the oil reservoirs through injection water provides great opportunity to lock large quantity of CO$_2$ inside the porous medium with high retention factor. Results of this study showed that both secondary and tertiary scenarios of CO$_2$-saturated water flooding are favourable with the storage capacity between 34% to 45% of the injected CO$_2$ in the sand-pack model.