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Summary

Events estimated in microseismic data processing account for only a fraction of the microseismicity generated
during a hydraulic fracturing experiment. Therefore, an uncertainty analysis of microseismicity-derived attributes is
necessary to evaluate the impact of our limited knowledge of the microseismic information into the
characterization of induced fractures. This study highlights the importance of incorporating tools from
Geostatistics into the analysis of microseismic information. In the current application, | use Sequential Gaussian
Simulation to estimate maps of location and probability of magnitude of microseismic events not recovered from
the monitoring records. The simulation is performed using the observed microseismic event locations and their
magnitudes as conditioning points. Spatial continuity of event magnitudes expressed in the form of variogram
models and an assumed distribution of magnitudes, serve to constrain the simulation process. The result from the
simulation is a map of microseismic event locations where every point in the map presents an associated
magnitude distribution of probability. By thresholding the events with smaller magnitude an estimation of the
location of events not recovered from the microseismicity records is obtained.

Introduction

Microseismic monitoring involves the passive recording of microseismic events produced during the
injection of fluids at high pressure into rock formations (Maxwell et al., 2010). Depending on the
prevalent signal to noise ratio (SNR), and the distance and orientation of the recording stations, only a
fraction of the microseismicity generated during the injection process is recovered from monitoring
records (e.g., Haney et al., 2011). Moreover, assuming a Gutenberg-Richter distribution of magnitudes
(Gutenberg and Richter, 1944) it is possible that the fraction of induced microseismic events not
represented in the processing results is larger than those identified during data processing. The
attributes of observed microseismic events are used for the interpretation of different aspects of the
fracture produced during the injection process (Maxwell, 2010). Therefore, an assessment of the
uncertainty introduced due to our limited knowledge of the complete set of generated microseismic
events is desirable for a better evaluation of the interpreted fracture’s properties. In this study, such
evaluation is accomplished through the use of Geostatistics.

Geostatistics involves the application of statistical concepts to geological variables. Simulation
techniques are a part of Geostatistics that aim at providing numerical models to assess the uncertainty
of geological variables (Deutsch, 2002). Uncertainty assessment through the use of simulated models
has been applied into the estimation of connected pore volume (Srivastava, 1990), determination of
velocity distributions (Lo, 1994), estimation of reserves (Derakhshan and Deutsch, 2008), and a broad
amount of other applications of reservoir characterization (e.g., Strebelle and Journel, 2001; Ren et al.,
2007; Deutsch, 2010; Le Ravalec-Dupin et al., 2011). Sequential Gaussian Simulation (SGS) is a
simulation technique that involves the transformation of all the variables of interest into a Gaussian
space (Deutsch, 2002). Using SGS, | obtain a numerical model where every point in a grid is a
microseismic event with a magnitude distribution of probability. By thresholding the magnitude of the
simulated events a map of new probable microseismic locations is generated.
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Method

The simulation method is described using an example with a synthetic cloud of 130 microseismic event
locations (Figure 1). The synthetic event locations are generated assuming a homogeneous Poisson
point process (Lantuejoul, 2002). Event magnitudes are assigned randomly following a Gutenberg-
Richter relationship with b = 0.75 (Figure 2a). Assuming that the synthetic events (observations)
correspond to the larger magnitude events produced during the injection process, only magnitudes from
the lower part of the distribution are assigned. The simulation steps are summarized as:

- Debiasing of the experimental distribution of magnitudes. Using the observed event magnitudes
a probability function model is fitted. In this synthetic example, the model is known and directly
assigned (Figure 2a).
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Figure 1: Synthetic locations of microseismic events.
- Using the fitted probability model, the observed magnitudes are transformed to a Gaussian
space (Figure 2b).
- Variogram modeling. In this step, the main directions of continuity are found by analyzing the
geometrical distribution of the microseismic cloud. Presumably, these directions are also linked
to the geomechanical properties of the medium (Maxwell, 2011).
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Figure 2: (a) Histogram of synthetic event magnitudes (red bars) and Gutenberg-Richter model that fits the
synthetic observations (black line). (b) Experimental magnitudes transformed into a Gaussian space (red dots).
The black line corresponds to a Normal CDF.

GeoConvention 2012: Vision

2



- Sequential Gaussian Simulation (Figure 3a).
- Transformation of simulation results back to original units (Figure 3b).
- Estimate statistical properties of the simulated values (Figures 4 and 5).
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Figure 3: (a) Cumulative probability distribution of magnitudes of one realization of SGS (red dots). (b) Histogram
of magnitudes of simulation results transformed back to the original magnitude units (red bars). Overlying the
histogram is the assumed Gutenberg-Richter model (black line).
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Figure 4: Map of simulated locations of microseismic events with average magnitude above -2.9 after 1000 SGS
realizations (blue dots). Every dot has an associated magnitude distribution of probability (small boxes on the
right). In this image the size of the dots are proportional to the average magnitude in each distribution. The
synthetic (observations) conditioning events are plotted with red dots.

Each realization of SGS provides a map of magnitude distribution that is consistent with the assumed
Gutenberg-Richter relationship, the variogram models and the conditioning information (observations).
After an adequate number of realizations, statistical analysis of the simulation results allows uncertainty
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assessments of microseismicity attributes such as fracture density (number of simulated events above
a magnitude threshold over the total of grid nodes, Figure 5), amount of energy involved in the
generation of microseismic events, size of the stimulated volume. Considering that the magnitude of a
seismic event is related to the fault plane dimensions, attributes like connectivity between events above
a certain magnitude can be of significant interest to interpret the volume of the fracture contributing to
the well’s productivity.
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Figure 5: Probability distributions of percentage of nodes in the grid domain with simulated magnitudes above a
specified value.

Conclusions

Practical limitations imposed by the positioning of monitoring stations and the prevalent SNR make
impossible to recover the locations and attributes of all microseismic events generated during a
hydraulic injection experiment. Consequently, it is important to establish methodologies that allow the
assessment of the uncertainty introduced by our limited knowledge of microseismic information. In this
study, | exemplified a methodology for such evaluation through the use of Sequential Gaussian
Simulation. An important advantage of this methodology is that additional information can always be
incorporated during the simulation process to obtain realizations consistent with all available knowledge
about the medium. Main disadvantages rest on the susceptibility of introducing errors into the
simulation results if the assumptions made are not valid. Potential applications of the methodology lie in
the evaluation of all microseismicity-derived attributes in terms of the uncertainty associated to a limited
knowledge of the total number of events produced during the injection process. This work highlights the
importance of incorporating geostatistical tools into the analysis of microseismic data.
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