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Abstract 
Summary 
Wavefield extrapolation by spatially variable phase shift is currently a migration tool of importance. 
In this paper, we present a new prestack seismic migration algorithm using the Gabor transform with 
application to the Marmousi acoustic dataset. The imaging results show a very promising depth 
imaging algorithm, which is competitive with the best depth imaging algorithms. 

The Gabor depth imaging algorithm approximates generalized phase-shift-plus-interpolation 
(GPSPI) wavefield extrapolation using a Gabor, or windowed Fourier, transform to localize the 
wavefield. The key to an efficient algorithm is to develop an adaptive windowing scheme that only 
localizes the wavefield as required by the lateral velocity variation.  If there is no lateral velocity 
variation then no localization (windowing) is required. When velocity varies rapidly, then many, 
relatively narrow, windows are required for accurate wavefield extrapolation. We present the details 
of an adaptive windowing method that has a controlled phase error. Programs have been coded 
with the adaptive windowing algorithm, which substantially reduces the computational burden in 
wavefield extrapolation when compared to the full GPSPI integral. We will illustrate the performance 
of this algorithm with images from prestack depth migration of the Marmousi dataset. 

Introduction 
Migration with Gazdag (1978) phase shift method can only accommodate constant lateral velocity in 
any depth step, which is unrealistic for many practical applications, where velocity structures are 
often heterogeneous with strong lateral velocity fluctuations. To address lateral velocity variations in 
phase-shift wavefield extrapolations, phase shift plus interpolation (PSPI) was proposed by Gazdag 
and Sguazzero (1984) using a set of reference (laterally homogeneous) velocities to calculate the 
corresponding extrapolated wavefields; the final extrapolated wavefields are obtained by 
interpolating with specific velocities corresponding to certain lateral positions. Stoffa et al (1990) 
gave an alternative extrapolation algorithm, split-step Fourier migration, dealing with lateral velocity 
variation while keeping the advantages of the phase-shift method, i.e., accuracy and efficiency. 
Other phase-shift wavefield extrapolation methods such as `phase-screen propagator' (Wu and 
Huang, 1992; Roberts et al., 1997; Rousseau and de Hoop, 2001; Jin et al., 2002) also provide for 
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accurate imaging with abrupt velocity variations in such geological settings as salt-dome 
environments. Margrave and Ferguson (1999) used a nonstationary phase shift (NSPS) method 
and a generalized phase shift plus interpolation (GPSPI) to improve migration results, where 
wavefield extrapolations were done totally in the Fourier domain using arbitrary velocity variations. 
Our wavefield extrapolation method follows Jin and Wu (1998) and approximates GPSPI with a 
Gabor extrapolator. We also have control over speed and accuracy of Gabor wavefield 
extrapolations with the help of the adaptive windowing algorithm by Grossman et al., (2002). In the 
following sections, we will demonstrate the adaptive Gabor wavefield extrapolation algorithm and 
some imaging results created by these algorithms. 

Gabor Wavefield Extrapolation Theory 
 
The Gabor transform 
The continuous Gabor transform pair is written as (following Margrave and Lamoureux (2001)) 

 ∫ℜ −−= TTTTTTTTg dxkixxxgxskxsV )exp()()(),( ''                                     (1) 

and 

∫ℜ −=
2

''' )exp()(),()( TTTTTTTTgT dxdkkixxxkxsVxs γ ,       (2) 

where Tx  denotes transverse coordinates (e.g.,  xxT =  in 1D, ),( yxxT  in 2D), )( Txs  is the 
input signal, ),( '

TTg kxsV  is the Gabor spectrum of )( Txs , )( '
TT xxg −  is an analysis 

windowing function with its centre at Tx ' , )( '
TT xx −γ  is a synthesis windowing function, and  

Tk  is the coordinate in the wavenumber domain corresponding to Tx , ℜ  denotes real 
domain for integrations. Equation (1) is in fact a Fourier transform of a windowed version of 
signal Tx . 

Equation (1) is used to calculate the Gabor spectrum of )( Txs ; in order to recover the original 
signal )( Txs  from its Gabor spectrum ),( '

TTg kxsV , analysis and synthesis windows must 
satisfy 

∫ℜ = 1)()( TTT dxxxg γ             (3) 

(Margrave and Lamoureux, 2001), which is called a partition of unity (POU). The analysis 
windows could be any kind of mathematical functions. However, in our wavefield 
extrapolation applications, we choose functions with a localization property. In this way, we 
may represent our wavefield extrapolator depending on local velocities with a small error. 
Gaussian windows are good candidates, and we have chosen them for this paper. We also 
choose the synthesis window as unity, that is, we do no localization in the synthesis process. 
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Wavefield extrapolation with the Gabor transform 
The generalized phase shift plus interpolation (GPSPI) wavefield extrapolation is formulated as 
(Margrave and Ferguson, 1999; Margrave et al., 2004) 

TTTTTTTP dxxikzxkWzkzzx )exp(),,(ˆ),,(ˆ),,( −∆=∆+ ∫ℜ ωψωψ ,      (4) 

where 
  )))((exp(),,(ˆ zxvikzxkW TzTT ∆=∆ ,            (5) 
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z∆  is the step size of extrapolation in z  (vertical) direction, ω  is temporal frequency and )( Txv  
denotes lateral velocities along a slab with thickness z∆ . Equation (4) extrapolates wavefields at 
depth z  down to depth zz ∆+  in the frequency-wavenumber domain. 
 
To develop a Gabor approximation to equation (4), we introduce the approximation 
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where Z  denotes integer collection, jΩ  is a family of windows forming a POU (refer to 
equations (8)), the discrete form of POU), )( Tj xS  is a split-step Fourier operator for phase 

correction in the Gabor imaging, ),(ˆ zkW Tj ∆  is a wavefield extrapolator with reference velocities 

jv , which are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∆=

jT
Tj vxv

zixS 1
)(

1exp)( ω ,          (9) 

( )zvikzkW jzTj ∆=∆ )(exp),(ˆ            (10) 
and 
 

∫
∫

ℜ

ℜ

Ω

Ω
=

TTj

TTTj

j dxx

dxxvx
v

)(

)()(
,           (11) 

respectively. Notice that in equation (10), zk  is still calculated with equation (6), using the 
reference velocity jv  corresponding to a specific window jΩ  (see equation (11)) instead of 

)( Txv . Using approximate wavefield extrapolator (7) in (4) gives 

TTTTjT
Zj

TjTjTP dxxikzkWzkxSxzzx )exp(),(ˆ),,(ˆ)()(),,( −∆Ω=∆+ ∫∑ ℜ
∈

ωψωψ .    (12) 

Equation (12) specifies our Gabor wavefield extrapolator. 
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Gabor wavefield extrapolation with adaptive windowing method 
If analysis windows in Gabor wavefield extrapolations are uniformly distributed along the lateral 
dimensions, we will, in most circumstances, have excessive redundancy in computations. That is, 
the algorithm without adaptive windowing usually calculates more windowed Fourier transforms 
than it requires. For example, we know that for homogeneous media, we only need one window 
instead of many, where the GPSPI method degenerates into Gazdag (1978) Fourier migration 
(phase shift with constant velocity) in laterally homogeneous media. If the lateral velocity 
structures in a slab are not extremely inhomogeneous, we can use fewer windowed Fourier 
transforms in wavefield extrapolations than we do in rapidly varying velocity models. Adaptive 
windowing algorithms are suggested to deal with different types of lateral velocity structures met 
in Gabor wavefield extrapolations. 
 
At this time, we use the Grossman et al. (2002) algorithm, which uses lateral velocity gradients to 
determine the number of windows needed in wavefield extrapolations. 
 
Imaging the acoustic marmousi velocity structures with the Gabor extrapolator 
The Marmousi synthetic data set has been widely used as a benchmark for testing depth imaging 
algorithms. The Marmousi velocity profile used in our depth imaging is shown in Figure 1 (a). In 
the Marmousi synthetic data set, we have 240 shot records, each of which has 96 traces, with 
time extending to about 2.9 seconds. For each shot record, there are 241 extrapolation steps with 
step size 5.12=∆z  meters. 
 
Before we discuss the imaging results, we explain the parameter used in the adaptive windowing 
algorithm. We call this parameter `threshold', which is used to set the threshold in terms of the 
relative velocity variation (related to the lateral velocity gradients). For example, when threshold = 
5, we mean that 1/5=20% of the mean velocity in the current window is set as the threshold; if 
velocity difference between the mean velocity of the current window and that of the next 
neighbouring window along the lateral dimension exceeds this threshold, we will not merge the 
next window into the current one. Otherwise, we do. That is, if the difference between the mean 
velocity of the current window’s and that of the next one is smaller than the threshold set by 
`threshold', the next window is merged with the current window and the new combined window 
works as the `current' window. If not, we will leave the current window as it is and acquire the next 
as the `current' window, and repeat the process until we reach the edge of the lateral dimension. 
For mathematical details of the algorithm, see Grossman et al. (2002). If `threshold' is smaller, 
fewer windows will be used, and vise versa. 
 
In imaging results Figure 1 (b) and (c), we used a threshold of 5. These are the cases in the 
Marmousi imaging with the most modest number of windows assigned by the adaptive windowing 
algorithm. We see that both are no better than the image in Figure 1 (d), where a threshold of 10 
is used. Looking at the fault regions and the bottom part of the images in Figure 1 and examining 
the target reservoir, from 6000 m to 7500 m at about depth 2500 m; we can see that the reservoir 
is adequately imaged in (d), but not in (b) and (c). We conclude that more windows means better 
imaging results, but more expensive to calculate them. So with this parameter (threshold) we can 



 

  What’s Next? Where is Our Industry Heading? 89

control the quality (accuracy) of the Gabor imaging. i.e., we have freedom to trade between 
accuracy and efficiency in the Gabor depth imaging. 
 
 

      
 (a) Marmousi Velocity Model  (b) Gabor Imaging without Split-step 

       
  (c) Gabor Imaging with Split-step  (d) Gabor Imaging with Split-step 
 
Figure 1. Marmousi Velocity Model and Gabor Imaging Results. (a) windowing parameter threshold=5 without 
the split-step Fourier operator to correct phases in wavefield extrapolation with the Gabor wavefield 
extrapolator; (b) windowing parameter threshold=5 with the split-step Fourier operator to correct phases in the 
Gabor wavefield extrapolation; (c) windowing parameter threshold=10 with the split-step Fourier phase 
corrections. We can see from these three imaging results that with more windows used, the imaging results are 
better (compare (b) and (c)), and that with the phase correction, the imaging results are also better (compare (c) 
and (d)). On the PC with a CPU of 3.0 GHz, for the Gabor imaging of Marmousi velocity model with threshold=5, 
the CPU time is about 38 hours; if threshold=10 is used, CPU time will nearly double. 
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Figure 1 (b) and (c) are used to show how the split-step Fourier correction plays an important role 
in the Gabor depth imaging. Figure 1 (b) shows the Gabor imaging result without the split-step 
Fourier correction; Figure 1 (c) shows the result with the split-step Fourier correction. Both 
imaging results are calculated with the same windowing parameter, threshold=5, which means 
there is no imaging difference caused by the adaptive windowing. Without the split-step Fourier 
operator to correct phase in Gabor extrapolations, the imaging result is very poor compared to the 
one with the split-step operator. Examining Figure 1 (b) and (c) in the lower parts of the images, 
we can nearly see the imaged reservoir in (c) but not in (b). 
 
To see how the adaptive windowing algorithm works in the Marmousi velocity model, in Figure 2 
we show `windows versus the depth and the lateral coordinates (offsets)' corresponding to the 
dimensions of the Marmousi velocity model used in the Gabor imaging. The figure is created with 
the Gabor imaging process with a threshold of 20 (a finer windowing scheme); the corresponding 
Gabor depth imaging result is shown in Figure 3 (a), to be compared to the image generated by 
the FOCI (Figure 3 (b)). 
 
 

     
(a) The colour-coded Marmousi Velocity             (b) Number of Windows used in Marmousi 

   Model                                               Velocity Model 

Figure 2. Windowing Marmousi Velocity Model with the Adaptive Windowing Algorithm. In (a), the units of the 
scale on the right are in m/s; in (b), the units of the scale on the right are in number of windows. Note that the 
transverse coordinates in (b) is not the true coordinates. The figure in (b) consists of 240 columns of `windows 
versus depth'. These columns are created during the shot migrations. Each of these 240 columns `windows 
versus depth' corresponding to a velocity `piece' adapted from the whole Marmousi velocity model used for a 
single shot migration. We put the true transverse coordinates into the figure to make it roughly comparable with 
the transverse coordinates in the velocity model (a) to see how the windows are distributed. 
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To show how well the Gabor extrapolator works, we use a FOCI (Margrave et al., 2004) Marmousi 
imaging result to compare with the Gabor Marmousi imaging result (see Figure 3 (a) and (b)). We 
see that, overall, the Gabor imaging algorithm gives a very good imaging result for the Marmousi 
velocity structures. Compared with the FOCI imaging result, the Gabor imaging method yields a 
very clear image of the Marmousi velocity model, though the FOCI seems to give more detailed and 
enhanced structural information in those over-thrust regions. The Gabor extrapolator may do as well 
as the FOCI in these regions with a more detailed windowing scheme. i.e., we can use more 
windows to get images that are comparable with the FOCI in those over-thrust regions, but the 
processing time will increase. In the lower part of Marmousi model, especially, the region of the 
anticline enclosing the target reservoir, both imaging methods do good jobs. The Gabor method 
creates clearer image just above the anticline than the FOCI does, while the FOCI images better 
inside the anticline. The Gabor extrapolator is slower than the FOCI for comparable results. 
Nevertheless, we have a hope to improve the accuracy and speed of imaging with the Gabor 
extrapolator by using some new adaptive windowing algorithms and different window sets. 
 

 

     
 (a) Imaging with the Gabor Extrapolator   (b) Imaging with the FOCI 
 

Figure 3. Marmousi Imaging Results. (a) The Gabor imaging result with threshold=20 in (a) was created by a PC 
(3 GHz CPU) in about 112 hours; (b) FOCI imaging result runs on a common PC for about 20 hours.  

 
Conclusions 
The Gabor extrapolator is a very promising imaging tool in seismic depth migration. The Gabor 
imaging results have shown that we can get accurate depth images for complicated velocity 
structures such as the Marmousi acoustic velocity model, which is a solid basis for further 
research and exploration of the new imaging algorithm. The Gabor extrapolator can be used to 
image velocity structures as accurately as we may require. Computation (imaging) speed has 
been highly improved when the adaptive windowing algorithm is integrated into the Gabor 
wavefield extrapolation. 
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