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Summary 
 
We present a technique for optimizing the seismic resolution in the presence of noise. We first discuss a simple 
anatomy of the seismic trace. The deconvolution operator which depends explicitly on an estimate of the SNR and 
wavelet spectra is then outlined with an insight into its effect on the data. Finally, we present a case study form the 
Rosemary basal quartz field in central Alberta which highlights various techniques, and propose an optimal 
enhancement processing flow. 
 
 
1. Introduction 
 
Consider the simple convolutional model illustrated in Figure 1.  The model has three main constituents: 

1- The reflectivity represents contrasts in the acoustic impedance of the earth, the information we strive to 
preserve and bring up as much as possible. 

2- The wavelet represents the energy source and earth filtering effects.  It masks the reflectivity making it difficult 
to resolve close reflection coefficients representing thin beds. To complicate the picture, the wavelet is non-
stationary due to progressive earth filtering (attenuation and dispersion). In order to improve the resolution of 
seismic events, it is desired to compress the wavelet in time so that it would have less interference effects. 

3- The noise is everything else recorded on the seismogram. It contains random components from acquisition 
source and array design as well as apparently random components due to back scattering from small 
inhomogeneous zones. It also contains coherent noise due to multiples, ground roll, converted waves and 
extraneous sources. The noise confuses the picture in two ways: it makes it difficult to visually detect primary 
reflections, and is amplified by wavelet compression filters.  This sets a limit on how far one can compress the 
seismic pulse without irreparably altering the shape of the wavelet.  

 
The power spectrum of the trace contains a composite of these effects, from which we hope to recover a 
representation of the reflectivity. In the absence of further assumptions, this seems to be an exercise in futility. 
Various spectral components can easily leak into one another, distorting our treasured reflectivity more after 
deconvolution. 
 
Thus, out of convenience, we have the common assumption that the reflectivity is white, an assumption that has been 
invalidated by recent research indicating that the reflectivity is blue [2]. Most standard deconvolution algorithms totally 
ignore the noise term. In practice, a noise attenuation technique such as FX prediction filtering or Radon filtering is 
called upon to address the noise problem. This adds more implicit assumptions about the constituents of seismic 
data. When it comes to the wavelet, the convenient white noise reflectivity assumption is used to compute a scaled 
version of its power spectrum. The celebrated minimum phase assumption is used to estimate the shape of the pulse. 
Although there may be some physical grounds to justify a minimum phase wavelet in some situations (e.g. dynamite 
source), the minimum phase of a band-limited signal is quite unstable since it depends on the logarithm of the 
amplitude spectrum which is very high in absolute value at attenuated frequencies. Some sort of regularization in the 
minimum phase deconvolution process is needed to force some consistency on the phase. 
 
Ignoring the noise term poses problems to most standard deconvolution techniques with no adequate mechanism to 
address them. This explains why surface-consistent deconvolutional operators work better in low noise environments.  
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Figure 1: Convolutional Model for Seismic Data 

 
2. The Operator 
 
Given an estimate of the coherence spectrum c(f) and  the  wavelet spectrum W(f), it can be shown that [1] an optimal 
linear estimator of the reflectivity from the seismic trace is given by 
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which implies that the desired wavelet amplitude spectrum is the coherence spectrum.  The coherence spectrum is 
related to the SNR spectrum via: 
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Figure 2 shows the proposed operator as a cascade of a signal estimation filter and an inverse filter.   
 
Clearly, the objective of this deconvolution is not to flatten the seismic spectrum but rather flatten the wavelet 
spectrum in a manner consistent with the SNR spectrum of the data. Flattening the seismic spectrum would be a 
geologic distortion with significant residual wavelet and distorted noise. Flattening the wavelet spectrum naively, 
would blow up the noise level at frequencies where wavelet amplitude spectrum is low, thus flooding the reflectivity 
with a lot of noise. 
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Figure 2: A block diagram of the operator 

 
Although this operator was derived as the linear least squares estimator of the reflectivity sequence, it can also be 
interpreted in other ways. 
 

1- Inverse filter applied to an estimated signal. 
2- Wavelet shaping filter, where the input wavelet W(f) is shaped into the magnitude coherence spectrum. 
3- Inverse filter with frequency-dependent prewhitening. Rewrite the operator as 
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 We can see the prewhitening level would be high at frequencies with poor SNR, which is effective for noise 
control. Notice here that different frequency components are handled differently in accordance with their SNR 
rather than using a fixed prewhitening level for all frequencies. 

 
To estimate the SNR spectra, we use rational transfer function models that provide accurate spectral estimates using 
short time windows. Wavelet spectra are estimated from estimated signal spectra using a proprietary cepstral 
modelling technique. This technique does not require white reflectivity, which makes it useful for short time windows. 
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Thus, for non-stationary environments, the technique can be used to estimate many operators separated by a small 
time step. Such an approach would have the advantage of addressing both non-stationarity and additive noise issues 
when deconvolving seismic data. 
 
The phase of the operator can be set to zero or minimum phase. The phase of the wavelet can be estimated after 
deconvolution from seismic data alone using a variety of techniques developed at SET. Such techniques are more 
stable for larger band-widths.  
 
 
3. Examples 
 
We now present a case study from the Rosemary basal quartz field in central Alberta.  Figure 3 shows an inline from 
the unfiltered migrated stack. Figure 4 shows the inline after FXY filtering and signature deconvolution whereas 
Figure 5 shows the data processed through the proposed technique which is clearly a higher resolution image. 
 
The next three figures are of the same geographic area, except overshot in a megabin design. Clearly, Figure 8 
shows more details. 
 
 
 
 

 

Figure 3: Unfiltered Migrated 
Stack 

 
 
 
 
 
 

 

Figure 4: FXY Noise 
Attenuation and Signature 
Decon  apllied to data in 
Figure 3 
 

 

 

 

 

 

Figure 5: The data of Figure 3 
after being processed by the 
outlined technique 
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Figure 6: Unfiltered Migrated 
Stack Megabin Acquisition 

 

 

 
 
 
 

 

Figure 7: Data of Figure 6 after 2 
Passes of Spectral Balancing 
and FXY Noise Attenuation 

 
 
 
 
 
 
 
 
 

 

Figure 8: Data of Figure 6 
after being processed by the 
outlined technique 

 
 
 
 
 
4. Conclusions 
 
We examined the problem of deconvolving noisy seismic data, and presented an optimal and practical approach 
based on basic estimation theoretic concepts.  The technique is applicable in both stationary and non-stationary 
environment without making explicit assumption of the form of earth absorption. The performance of this technique is 
demonstrated on real seismic data and compared with industry standard techniques. The examples presented 
support the validity of the technique and demonstrate the improvement that is attained by employing estimation 
theoretic concepts for seismic data processing. 
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